A few interesting examples

library(tidyverse)
library(stationaRy)
library(sf)
library(tmap)
library(spData)

library(AOI)
library(climateR)

library(raster)
library(rasterVis)

library(patchwork)

Precip and temp for specified location (point)

# Get the data 

#loc2use <- 'Death Valley National Park'
loc2use <- 'Union College'

AOI = AOI::geocode(loc2use,
                   pt = TRUE)

ts  = getGridMET(AOI, varname = c("tmmx","tmmn", "pr"),
                 startDate = "2024-01-01", 
                 endDate = "2024-12-31")
# convert units 
ts <- ts %>% 
  mutate(tmax = ((tmmx - 273.15)*(9/5) +32),
         tmin = ((tmmn - 273.15)*(9/5) +32),
         prcp = pr/25.4
         )
# Summary table

ts %>% 
  summarize(pcrp_max = max(prcp),
            temp_max = max(tmax),
            temp_min = min(tmin),
            temp_mean = mean((tmin+tmax)/2),
            temp_max_change = max(tmax - tmin),
            n_days = n()
            
            )
# Make the figures 

fig_01 <- ts %>% 
  ggplot() +
  geom_line(aes(x = date, y = tmax), color = "red") +
  geom_line(aes(x = date, y = tmin), color = "blue") +
  
  labs(x = "", 
       y = "Temperature (F)"
       ) +
  
  geom_hline(yintercept = 32, linetype = "dashed") +
  theme_bw() 
  


fig_02 <- ts %>% 
  ggplot() +
  geom_col(aes(x = date, y = prcp), color = "black") +
    
  labs(y = "Precipitation (inches)") +
    
  theme_bw()
# Make the figures 

(fig_01 / fig_02) +
  plot_annotation(title = paste(loc2use,": Temperature and precipitation", sep = ""),
                  caption = "Data source: GridMET",
                  tag_levels = "a"
                  ) 

Obtain and analyze precipitation data for Hurricane Helene (2024)

hurricane_data = getGridMET(aoi_get(state = c("NC")), 
                  varname = "pr", 
                  startDate = "2024-09-23", endDate = "2024-09-28")
r = terra::rast(hurricane_data)
r_inches <- r/25.4

Static map

tmap_mode("plot") 

fig_map <- r_inches %>% 
  tm_shape() +
  tm_raster(style = "cont") +
  tm_shape(spData::us_states) +
  tm_borders()

fig_map


Interactive map

tmap_mode("view")

fig_map 


tmap_mode("plot")


Get the maximum precipitation amount for each day of the storm

round(terra::global(x = r_inches, "max", na.rm = T),2) %>% as.data.frame()


Get climate data for specified region of the US

sf::sf_use_s2(FALSE)
## Spherical geometry (s2) switched off
temperature_US = getGridMET(aoi_get(state = "conus"), 
                  varname = "tmmn", 
                  startDate = "2024-10-31", endDate = "2024-10-31")
#> Spherical geometry (s2) switched off
#> Spherical geometry (s2) switched on
temperature_US <- terra::rast(temperature_US)
temperature_US <- temperature_US - 273.15
temperature_US <- (temperature_US*9/5) + 32
tmap_mode("plot")
## tmap mode set to plotting
temperature_US %>% 
  tm_shape() +
  tm_raster(style = "cont", palette = "-RdBu", midpoint = 32, title = "Min Temp (C)") +
  tm_shape(spData::us_states) +
  tm_borders() +
  
  tm_layout(legend.outside.position = "right", legend.outside = T)

Map of springs in New Mexico

library(osmdata)
library(tigris)
library(sf)
#library(osmplotr)
library(tmaptools)
library(OpenStreetMap)
loc2use <- "New Mexico"
bb_values <- getbb(loc2use)

bb_values
##         min        max
## x -109.0502 -103.00223
## y   31.3322   37.00018
springs_data <- opq(bb_values) %>% 
  add_osm_feature(key = 'natural', value = 'spring') %>% 
  osmdata_sf()
loc_border <- spData::us_states %>% 
  filter(NAME == "New Mexico")
tmap_mode("view")
## tmap mode set to interactive viewing
map_springs <- 
  tm_shape(loc_border) +
  tm_borders(col = "black") +
tm_shape(springs_data$osm_points) +
  tm_dots(col = "blue") 
map_springs

Obtain streamflow data from the USGS (Colorado River at Lee’s Ferry example)

library(dataRetrieval)
library(lubridate)
df_stream_data <- readNWISdv(siteNumbers = "09380000",
                             parameterCd = c("00060"),
                             statCd = "00003") %>% 
  renameNWISColumns()

Daily flows

df_stream_data %>% 
  ggplot(aes(x = Date, y = Flow)) +
  geom_line() +
  
  theme_classic()


Annual flow statistics

table_flows <- df_stream_data %>% 
  mutate(Year = year(Date)) %>% 
  group_by(Year) %>% 
  summarize(mean_flow = mean(Flow, na.rm= T), 
            min_flow = min(Flow, na.rm = T),
            max_flow = max(Flow, na.rm = T),
            n_meas = n()) %>% 
  filter(n_meas > 350)

table_flows
fig_max <- table_flows %>% 
  ggplot(aes(x = Year)) +
  geom_line(aes(y = max_flow), size = 1, color = "blue") +
  #geom_line(aes(y = min_flow), size = 1, color = "red") +
  #geom_line(aes(y = mean_flow), size = 1, color = "black") +
  
  theme_classic()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
fig_min <- table_flows %>% 
  ggplot(aes(x = Year)) +
  geom_line(aes(y = min_flow), size = 1, color = "red") +
  #geom_line(aes(y = mean_flow), size = 1, color = "black") +
  
  theme_classic()


fig_mean <- table_flows %>% 
  ggplot(aes(x = Year)) +
  geom_line(aes(y = mean_flow), size = 1, color = "black") +
  
  theme_classic()
fig_mean/fig_max/fig_min

Obtain US Census data

https://api.census.gov/data/2015/acs/acs5/variables

library(tidycensus)
census_example_df <- get_acs(geography = "county", 
                             variables = c(medincome = "B19013_001"), 
                             state = "NY", 
                             year = 2021)
## Getting data from the 2017-2021 5-year ACS
census_example_df %>% 
  arrange(-estimate)
census_example_df %>%
  mutate(NAME = gsub(" County, New York", "", NAME)) %>%
  ggplot(aes(x = estimate, y = reorder(NAME, estimate))) +
  geom_errorbarh(aes(xmin = estimate - moe, xmax = estimate + moe)) +
  geom_point(color = "red", size = 3) +
  labs(title = "Household income by county in New York",
       subtitle = "2021 American Community Survey",
       y = "",
       x = "ACS estimate (bars represent margin of error)") +
  
  
  theme_bw()

tmap_mode("plot")
## tmap mode set to plotting
map_income <- tm_shape(Schdy) +
  tm_polygons(col = "estimate", alpha = 1)

map_income

map_income_interactive <- tm_shape(Schdy) +
  tm_polygons(col = "estimate", alpha = 0.6)
tmap_mode("view")
## tmap mode set to interactive viewing
map_income_interactive