library(tidyverse)
library(stationaRy)
library(sf)
library(tmap)
library(spData)
library(AOI)
library(climateR)
library(raster)
library(rasterVis)
library(patchwork)
# Get the data
#loc2use <- 'Death Valley National Park'
loc2use <- 'Union College'
AOI = AOI::geocode(loc2use,
pt = TRUE)
ts = getGridMET(AOI, varname = c("tmmx","tmmn", "pr"),
startDate = "2024-01-01",
endDate = "2024-12-31")
# convert units
ts <- ts %>%
mutate(tmax = ((tmmx - 273.15)*(9/5) +32),
tmin = ((tmmn - 273.15)*(9/5) +32),
prcp = pr/25.4
)
# Summary table
ts %>%
summarize(pcrp_max = max(prcp),
temp_max = max(tmax),
temp_min = min(tmin),
temp_mean = mean((tmin+tmax)/2),
temp_max_change = max(tmax - tmin),
n_days = n()
)
# Make the figures
fig_01 <- ts %>%
ggplot() +
geom_line(aes(x = date, y = tmax), color = "red") +
geom_line(aes(x = date, y = tmin), color = "blue") +
labs(x = "",
y = "Temperature (F)"
) +
geom_hline(yintercept = 32, linetype = "dashed") +
theme_bw()
fig_02 <- ts %>%
ggplot() +
geom_col(aes(x = date, y = prcp), color = "black") +
labs(y = "Precipitation (inches)") +
theme_bw()
# Make the figures
(fig_01 / fig_02) +
plot_annotation(title = paste(loc2use,": Temperature and precipitation", sep = ""),
caption = "Data source: GridMET",
tag_levels = "a"
)
hurricane_data = getGridMET(aoi_get(state = c("NC")),
varname = "pr",
startDate = "2024-09-23", endDate = "2024-09-28")
r = terra::rast(hurricane_data)
r_inches <- r/25.4
tmap_mode("plot")
fig_map <- r_inches %>%
tm_shape() +
tm_raster(style = "cont") +
tm_shape(spData::us_states) +
tm_borders()
fig_map
tmap_mode("view")
fig_map
tmap_mode("plot")
Get the maximum precipitation amount for each day of the storm
round(terra::global(x = r_inches, "max", na.rm = T),2) %>% as.data.frame()
sf::sf_use_s2(FALSE)
## Spherical geometry (s2) switched off
temperature_US = getGridMET(aoi_get(state = "conus"),
varname = "tmmn",
startDate = "2024-10-31", endDate = "2024-10-31")
#> Spherical geometry (s2) switched off
#> Spherical geometry (s2) switched on
temperature_US <- terra::rast(temperature_US)
temperature_US <- temperature_US - 273.15
temperature_US <- (temperature_US*9/5) + 32
tmap_mode("plot")
## tmap mode set to plotting
temperature_US %>%
tm_shape() +
tm_raster(style = "cont", palette = "-RdBu", midpoint = 32, title = "Min Temp (C)") +
tm_shape(spData::us_states) +
tm_borders() +
tm_layout(legend.outside.position = "right", legend.outside = T)
library(osmdata)
library(tigris)
library(sf)
#library(osmplotr)
library(tmaptools)
library(OpenStreetMap)
loc2use <- "New Mexico"
bb_values <- getbb(loc2use)
bb_values
## min max
## x -109.0502 -103.00223
## y 31.3322 37.00018
springs_data <- opq(bb_values) %>%
add_osm_feature(key = 'natural', value = 'spring') %>%
osmdata_sf()
loc_border <- spData::us_states %>%
filter(NAME == "New Mexico")
tmap_mode("view")
## tmap mode set to interactive viewing
map_springs <-
tm_shape(loc_border) +
tm_borders(col = "black") +
tm_shape(springs_data$osm_points) +
tm_dots(col = "blue")
map_springs
library(dataRetrieval)
library(lubridate)
df_stream_data <- readNWISdv(siteNumbers = "09380000",
parameterCd = c("00060"),
statCd = "00003") %>%
renameNWISColumns()
df_stream_data %>%
ggplot(aes(x = Date, y = Flow)) +
geom_line() +
theme_classic()
table_flows <- df_stream_data %>%
mutate(Year = year(Date)) %>%
group_by(Year) %>%
summarize(mean_flow = mean(Flow, na.rm= T),
min_flow = min(Flow, na.rm = T),
max_flow = max(Flow, na.rm = T),
n_meas = n()) %>%
filter(n_meas > 350)
table_flows
fig_max <- table_flows %>%
ggplot(aes(x = Year)) +
geom_line(aes(y = max_flow), size = 1, color = "blue") +
#geom_line(aes(y = min_flow), size = 1, color = "red") +
#geom_line(aes(y = mean_flow), size = 1, color = "black") +
theme_classic()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
fig_min <- table_flows %>%
ggplot(aes(x = Year)) +
geom_line(aes(y = min_flow), size = 1, color = "red") +
#geom_line(aes(y = mean_flow), size = 1, color = "black") +
theme_classic()
fig_mean <- table_flows %>%
ggplot(aes(x = Year)) +
geom_line(aes(y = mean_flow), size = 1, color = "black") +
theme_classic()
fig_mean/fig_max/fig_min
https://api.census.gov/data/2015/acs/acs5/variables
library(tidycensus)
census_example_df <- get_acs(geography = "county",
variables = c(medincome = "B19013_001"),
state = "NY",
year = 2021)
## Getting data from the 2017-2021 5-year ACS
census_example_df %>%
arrange(-estimate)
census_example_df %>%
mutate(NAME = gsub(" County, New York", "", NAME)) %>%
ggplot(aes(x = estimate, y = reorder(NAME, estimate))) +
geom_errorbarh(aes(xmin = estimate - moe, xmax = estimate + moe)) +
geom_point(color = "red", size = 3) +
labs(title = "Household income by county in New York",
subtitle = "2021 American Community Survey",
y = "",
x = "ACS estimate (bars represent margin of error)") +
theme_bw()
tmap_mode("plot")
## tmap mode set to plotting
map_income <- tm_shape(Schdy) +
tm_polygons(col = "estimate", alpha = 1)
map_income
map_income_interactive <- tm_shape(Schdy) +
tm_polygons(col = "estimate", alpha = 0.6)
tmap_mode("view")
## tmap mode set to interactive viewing
map_income_interactive